3x^2+24x+5=9

Simple and best practice solution for 3x^2+24x+5=9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+24x+5=9 equation:


Simplifying
3x2 + 24x + 5 = 9

Reorder the terms:
5 + 24x + 3x2 = 9

Solving
5 + 24x + 3x2 = 9

Solving for variable 'x'.

Reorder the terms:
5 + -9 + 24x + 3x2 = 9 + -9

Combine like terms: 5 + -9 = -4
-4 + 24x + 3x2 = 9 + -9

Combine like terms: 9 + -9 = 0
-4 + 24x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-1.333333333 + 8x + x2 = 0

Move the constant term to the right:

Add '1.333333333' to each side of the equation.
-1.333333333 + 8x + 1.333333333 + x2 = 0 + 1.333333333

Reorder the terms:
-1.333333333 + 1.333333333 + 8x + x2 = 0 + 1.333333333

Combine like terms: -1.333333333 + 1.333333333 = 0.000000000
0.000000000 + 8x + x2 = 0 + 1.333333333
8x + x2 = 0 + 1.333333333

Combine like terms: 0 + 1.333333333 = 1.333333333
8x + x2 = 1.333333333

The x term is 8x.  Take half its coefficient (4).
Square it (16) and add it to both sides.

Add '16' to each side of the equation.
8x + 16 + x2 = 1.333333333 + 16

Reorder the terms:
16 + 8x + x2 = 1.333333333 + 16

Combine like terms: 1.333333333 + 16 = 17.333333333
16 + 8x + x2 = 17.333333333

Factor a perfect square on the left side:
(x + 4)(x + 4) = 17.333333333

Calculate the square root of the right side: 4.163331999

Break this problem into two subproblems by setting 
(x + 4) equal to 4.163331999 and -4.163331999.

Subproblem 1

x + 4 = 4.163331999 Simplifying x + 4 = 4.163331999 Reorder the terms: 4 + x = 4.163331999 Solving 4 + x = 4.163331999 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-4' to each side of the equation. 4 + -4 + x = 4.163331999 + -4 Combine like terms: 4 + -4 = 0 0 + x = 4.163331999 + -4 x = 4.163331999 + -4 Combine like terms: 4.163331999 + -4 = 0.163331999 x = 0.163331999 Simplifying x = 0.163331999

Subproblem 2

x + 4 = -4.163331999 Simplifying x + 4 = -4.163331999 Reorder the terms: 4 + x = -4.163331999 Solving 4 + x = -4.163331999 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-4' to each side of the equation. 4 + -4 + x = -4.163331999 + -4 Combine like terms: 4 + -4 = 0 0 + x = -4.163331999 + -4 x = -4.163331999 + -4 Combine like terms: -4.163331999 + -4 = -8.163331999 x = -8.163331999 Simplifying x = -8.163331999

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.163331999, -8.163331999}

See similar equations:

| (2/3x^2)(7/4x) | | 4+3=27 | | 3x-x=-18 | | 3f^2-29f-10=0 | | 2.5x+1.5x+18=3.8x-1.6x | | 6xy+18xy= | | 44=x/11 | | T=(4-5x)(2x-8)+2x+3 | | 2x+y+9=0 | | 1200=x+x*2 | | 5=3x/4=8x | | 9x+44=6x+3 | | X+(3x+7)=5 | | 10k=11k-8 | | A=(3x-2)(-6x+4)+10x*2 | | (n-1/n).(n-1/n) | | 4.52=4c | | 3a+12=8+a | | (10-5x)/(10-2X).(X-5)/5x | | (3y-7)(4-y)=0 | | N=5x+(3-2x)(2+5x)+4 | | n^2+201n-2700=0 | | (1/5)^-3m-1×625^-3m-3=25^3m | | (-96x²y)/(32xy) | | 21=(-2/3)g | | G(3x)=(X-5)/(2x-7) | | (-1/2)b=21 | | -125=(-300)-(-220) | | a(4+1)+b(4-2)=16 | | 3x/9=4x | | 6x-5=9x+1 | | -log(x)=4.55 |

Equations solver categories